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Abstract 

A method for the calculation of X-ray and neutron 
diffraction profiles of crystals with layer defects is 
described. Averages over a computer model of a 
configurational ensemble of crystallites with defects 
are used to define the scattering cross section. The 
method easily accommodates the modeling of com- 
plex defect geometries or correlations. Diffracted 
intensity profiles for the NixAll_x (5, 2) monoclinic 
martensite, trigonal polytypes and body-centered- 
cubic crystals are presented as examples. 

1. Introduction 
Many crystalline materials exist in nature in imper- 
fect forms, incorporating various kinds of chemical 
and structural defects. A common defect is the 
stacking fault - a variation of the layer order or 
deviation of the real crystal from the pattern of 
layers that characterizes the perfect crystal. Stacking 
faults are known to have a considerable effect on the 
diffraction patterns obtained from neutron, X-ray or 
electron diffraction experiments. Substantial discrep- 
ancies between the observed pattern and the results 
expected from a naive application of Bragg's law can 
arise. These effects include diffraction-peak broaden- 
ing, diffuse scattering, streaking, diffraction-peak- 
position shifts and intensity modulation. 

The study of stacking-fault defects has a long 
history. The earliest theoretical efforts extend back 
to the 1930s (Landau, 193"7; LiFschitz, 1937, 1939), 
with contributions from many prominent workers in 
the intervening time. The work of Hendricks & 
Teller (1942), Wilson (1941, 1949) and Jagodzinski 
(1949) has been particularly influential. Discussion of 
the effects of various crystalline imperfections on 
diffraction can be found in a number of basic texts 
on X-ray (Guinier, 1963; Warren, 1969) and neutron 
diffraction (Bacon, 1975; Krivoglaz, 1969) and a 
comprehensive review of the subject is available 
(Welberry, 1985). 
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The fundamental mathematical relations required 
for the description of a crystal incorporating layer 
defects have long been known and have been pre- 
sented in a number of forms. Two different mathe- 
matical approaches, the difference-equation method 
(Wilson, 1941) and the matrix method (Hendricks & 
Teller, 1942), have been attractive to theoretical 
investigators, although few results have been 
obtained for real crystals because of the complexity 
of the necessary computations. Application of these 
methods has been limited to structures containing 
elementary layer defects, that is twin or deformation 
faults, in simple systems. 

This paper illustrates a different method for the 
calculation of neutron diffraction patterns from 
polycrystalline and single-crystal specimens that 
incorporate various kinds of layer defects. It is an 
extension of an effort to understand the diffraction 
patterns that result from displacive phase transitions 
in the alkali metals lithium (Berliner & Werner, 
1986) and sodium (Berliner, Fajen, Smith & 
Hitterman, 1989; Berliner, Smith, Copley & 
Trivisonno, 1992). An earlier and more restrictive 
description of diffraction from crystals with layer 
defects was provided in the context of that work. 

The idea that underlies the method described here 
is that the average structure for the defective crystal, 
suitable for the calculation of the diffraction pattern, 
can be directly formed by averaging over a statistical 
configurational ensemble of crystallites, 'grown by 
the computer'. Complex defects and defect corre- 
lations can be introduced by altering the rules that 
the computer uses to assemble the individual crystal- 
lites that make up the ensemble. In the case of 
polycrystalline material, the phsical meaning of the 
statistical ensemble is clear - it corresponds to the set 
of crystallites appropriately oriented for diffraction 
of the incident radiation into the detector. For a 
single crystal with layer defects (or a coarse-grained 
polycrystal), elements of the ensemble are seen as 
representing different regions of the specimen, each 
of these regions of a size determined by the range of 
correlations permitted by the defect density. 
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The plan of presentation of these results is first to 
recast the (three-dimensional) general relations for 
the diffraction of radiation from a crystal into a 
simpler one-dimensional form. It will be seen that 
this is appropriate for a crystal with layer defects and 
considerably simplifies the problem of calculating the 
defect-crystal diffracted intensities. The underlying 
structure of the perfect crystal can then be specified 
algorithmically and a rule for introducing defects 
defined. The layer order or the orientation of the 
individual layers is maintained for each crystallite 
and used to calculate the averages that define the 
diffracted intensity of the ensemble. As an example, 
the effect of stacking faults in NixAl~ _x following its 
martensitic transformation is analyzed. In addition, 
the analogous analysis for the classic cases of 
stacking faults in trigonal polytypes and body- 
centered-cubic crystals is presented. 

2. Diffracted-intensity calculation 

The basic relations that govern the diffraction of 
neutrons from crystalline materials are presented 
here as the basis for the material that follows. The 
X-ray case can be obtained by using the appropriate 
Q and polarization-dependent scattering amplitudes 
in the equations. 

Consider a crystal composed of Nc equally spaced 
identical layers.t The layers each form a perfect 
two-dimensional lattice in the a and b directions but 
will be supposed to exhibit stacking disorder along 
the c axis - each layer being displaced relative to its 
neighbor parallel to the ab plane. The scattering 
cross section for neutrons incident on this kind of 
specimen may be written as 

do-/d~ = ~" Z X bp exp ( -  iQ" r,,~p)b*, 
nn '  "y'y" pp' 

× exp (iQ • r,,r,p,), (1) 

where r,,rp = R,, + r~ + rp is the position of the pth 
atom in the yth (planar) unit cell of the nth layer. 
The quantity bp is the neutron scattering length 
for the atom at the position r,,rp and Q = 27r (ha* + 
kb* + lc*), with the standard definitions of the 
reciprocal-lattice vectors a* and b*. For convenience, 
we define c* in terms of the interlayer separation and 
not the c-axis lattice parameter; consequently, l is not 
restricted to integer values. 

The sums over p and p'  yield the layer unit-cell 
structure factor f(Q) and 

dtr/d$2= Z ~f(Q)exp(-iQ'r,,~,)f(Q)* exp(iQ.r, ,r ,) ,  
nn '  3~'y' 

(2) 

t Although the planes described by the indices {h,k,l} are for- 
mally identical in any crystal system, these do not necessarily 
correspond to the layers most conveniently u~ed to describe layer 
defects. 

with r ,r  = R,  + rr. Since the layers are themselves 
two-dimensional lattices, r r = m l a  +m2b, with m~ 
and m2 integers, and R, represents the displacement 
of the nth layer relative to the origin. If the linear 
dimensions of a layer are large, viz Na, Nb >> 1, 
substitution into (2) and summation over m~, m2, m~ 
and rn~ gives 

d t r / d ~ =  If(Q)12NaN~Eexp[iQ.(R.,- R,,)]. (3) 
n n  s 

Equation (3) can be put in a more convenient form if 
we let n' = n + 8 and rearrange the double sum: 

do'/dO=lf(Q)12NaNb( Nc 

No-1 No-8 
+ E E {exp[iQ'(R, ,+a-R, , ) ]  

8 = 1  n = l  

+ c.c.}), (4) 

~ t  

/ 

where the inner sum is now over all pairs of layers 
separated by a distance t~c, c is the interlayer separa- 
tion and c.c. refers to the complex conjugate of the 
preceding term. The inner sum is now seen to be the 
sum of the exponential for all layers separated by 6 
layers. 

3. NixAll-x 

We now consider an example system and demon- 
strate how to calculate the diffraction pattern from a 
crystal with layer defects. Our modeling will serve to 
illustrate our technique; however, the subject we 
discuss here remains an outstanding problem, 
requiring analysis more sophisticated than that 
appearing here. 

NixAl~_x with 0.60 < x < 0.64 has a CsC1 struc- 
ture at high temperature and accommodates excess 
Ni atoms on the A1 sublattice. On cooling, the 
material martensitically transforms to a seven- 
layered monoclinic structure known as the 7M 
phase.t In the martensite, the monoclinic a and b 
axes lie near to the cubic [101] and [010] directions 
and the c axis is nearly parallel to the cubic [101] 
direction. The low-temperature martensite was 
studied with X-rays by Martynov, Enami, Khandros, 
Nenno & Tkachenko (1983), who suggested that the 
structure could be understood as the stacking of 
cubio (101) planes, each plane sheared an amount u 
in the monoclinic a direction with respect to the 
previous layer. From the pattern of diffraction-peak 
intensities, it was determined that the shears 
exhibited a (5, 2) pattern, that is five successive 

t The NixAlt ~ martensite actually consists of a number of 
structural forms and embedded twin bands in addition to the 7M 
phase. 
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shears parallel to a followed by two shears in the 
opposite direction. Fig. 1 contains a representation 
of the NixAl~ _ x martensite structure. 

The high-resolution neutron diffraction studies of 
Noda, Shapiro, Shirane, Yamada & Tanner (1990) 
and Shapiro, Yang, Noda, Tanner & Schryvers 
(1991) demonstrated that NixAl~ _ x becomes unstable 
as it is cooled. Phonon softening and diffuse scat- 
tering presage the appearance of a new phase at 
(approximately) the seven-layer periodicity observed. 
These authors found that the diffraction pattern 
from a single variant of the NixAll-x martensite 
deviated from that expected for a (5,2) layer 
stacking rule. They observed diffraction-peak 
broadening, peak-position shifts and peak splitting 
along hOl lines. Then, by assuming an underlying 
perfect crystalline 7M state, they obtained the crys- 
tallographic jgarameters am = 4.172, bm= 2.690 and 
Crn = 14.450 A, with a monoclinic angle fl,,, = 94.37 °, 
as the structural parameters of the new phase. 
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Fig. 1. The NixAll_x martensite structure. Ten layers of the 
monoclinic crystal with Ni atoms denoted • and A1 atoms 
illustrate the shifting of the (former) cubic (101) planes by an 
amount u at each layer in the (5, 2) pattern. Two parallelepipeds 
marking atoms corresponding to two unit cells of the original 
cubic Ni~Al~_x structure have been outlined. The shadowed 
plane segments passing up the middle of the figure illustrate the 
transformation-induced distortion of the cubic (10T) plane. The 
orientation of the orthorhombic coordinates used for the 
stacking-fault diffraction-profile calculation are shown. The 
layers corresponding to one monoclinic cell have been 
numbered. 

Yamada, Noda & Fuchizake (1990) have proposed 
an NixAl~_x martensite structure incorporating 
regions with the same (5, 2) stacking sequence but 
two (slightly different) monoclinic angles. This work 
relies on the assumption of (nonlinear) stability of 
so-called periodon structures (Barsch & Krumhansl, 
1988), a novel and yet poorly understood excitation. 
This analysis is in reasonable agreement with experi- 
ment. However, the presence of multiple structural 
variants* for the martensite phase, along with the 
accompanying disorder, make it reasonable to argue 
that anomalies in the diffraction patterns may re- 
sult from layer defects frozen into the crystal by 
the transformation (the so-called accommodation 
problem). 

In what follows, we use a simplified description of 
the NiA1 structure, one that allows easy demon- 
stration of the effect of layer defects on diffraction 
patterns. To be specific, we assume that, for the 
martensitic phase, successive cubic (101) planes are 
sheared in the manner described above. Then, there 
are a number of simple errors in the stacking 
sequence that could affect the diffraction pattern: 

(1) Twin and deformation faults. These are the 
simplest stacking errors for the NixAll-x martensite 
crystal. In the first case, the crystal would contain 
regions where the stacking sequence changed from 
(5, 2) to (2, 5). In the second case, the stacking order 
would be interrupted at some layer by a shear in the 
direction opposite to that prescribed by the (5, 2) 
stacking rule. 

(2) Stacking variants. Sections of the martensite 
crystal might adopt a different stacking order. A 
layer stacking order corresponding to (4, 1, 1, T) or 
(3, T, 2, T) would maintain the monoclinic angle but 
would be expected to change diffraction-peak inten- 
sities. Stackings that follow rules such as (4, 3), 
(4, 2), (5, 3) and so on will tend to alter the mono- 
clinic angle and diffraction-peak positions and 
intensities. 

In addition to the defects described above, more 
complex defect geometries, such as the 'double-twin' 
stacking fault observed in the alkali-metal mar- 
tensites (Berliner et al., 1989, 1992; Gooding, 1989; 
Prodanos & Gooding, unpublished) might be present. 

The objective is to obtain the diffracted intensity 
for an oriented ensemble of NixAll-x crystallites in 
terms of the reciprocal-space coordinates for com- 
parison between different stacking-fault models and 
the experimental results. In this context, the mono- 
clinic coordinates are inconvenient. Starting from the 
perfect (5, 2) crystal, stacking faults that change the 

* Unless the degeneracy is broken in some fashion, crystalliza- 
tion of the low-temperature Ni~AII_ x martensite phase can occur 
along any of the six (110) directions of the CsCi high-temperature 
phase. 
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(average) monoclinic angle also change the direction 
and magnitude of the appropriate reciprocal-space 
coordinates. Therefore, orthorhombic coordinates 
will be used to describe the individual NixAll _x crys- 
tallites. The orthorhombic a and b axes are the same 
as the corresponding monoclinic coordinates, while 
the interlayer spacing, (C/7)COS(~m- ~'/4), will be 
used to define c*. 

In these orthorhombic coordinates, the position of 
the nth layer for a general stacking of layers in the 
NixAl~_x martensite can be written as 

R, ,=(a/4)[1- ( -1)"]+ug, ,a+ne ,  (5) 

where the first term represents the gross alternation 
of atom positions that the martensite inherits from 
the cubic (I01) planes, the second term accounts for 
the accumulated interlayer shear at layer n and the 
last term represents the displacement along the c 
axis. The value of the monoclinic angle and c-axis 
lattice parameter obtained by Noda el al. (1990) 
require that u = 0.328 A. The quantity'g,, tabulates 
the sequence of layer-layer shears that describe the 
stacking order. 

Using the definition of R, given in (5) and the 
standard representation of Q, it is possible to rewrite 
the exponential in (4) as 

exp [iQ" (R,,,- Rn)] 

= ( -  1)hexp{2"ntT.hu(g,,+8-g,,)+ 6l]} 8 odd 

exp [iQ" (R , , -  R,)] 

= exp{2"n'llhu(g,,+8-g,,)+ 8l]} 6 even. 

(6) 

From (4) and (6) and with the average over the 
ensemble of crystallites explicitly shown, the dif- 
fracted intensity for an NixAll_~ crystal with 
stacking faults is given by 

I(Q)= If(Q)I2NaN~(Nc 

fN~! T N,.-8 
+ (I/T) trois ~--I 2[cos (27rhuAg,,,8) 

. ~v~ 

x cos (277"8l) + sin (2"trhuAg,,.8) sin (277"8l)] 

N,-i TN¢--8 
+ X X Z 2(-1)h[cos(2"n'huAg,,.8) 

B = I t r i a l s  n = 1 
o d d  

x cos (2~-8l)+ sin (27rhuAg.,6)sin (27r8l)]}), 

(7) 

where Ag,,,~ = (g8 +, - gn). 

The prescription for calculating the diffracted 
intensity profile for a perfect NixAl~-x crystal using 
(7) is 

(1) Model the layer stacking by assembling the Nc 
layers according to the (5, 2) stacking rule. In prac- 
tice, g, is tabulated for the Nc layers that correspond 
to a single crystallite of the ensemble. 

(2) Compute the sum of [cos(2"n'huAg,,.8)+ 
sin (2,n-huAg,,.~)] for all sets of layer pairs separated 
by 8 layers. 

(3) Repeat steps (1) and (2) for each of T crystal- 
lites in the ensemble. As each crystallite is 'grown', 
the sum computed in step (2) is maintained so at the 
end the global sum over all layers for all the crystal- 
lites in the ensemble is obtained. 

(4) Perform the sum over 8 for the particular 
value of Q, i.e. h, k and l. 

In order to introduce defects, the stacking of layers 
described in step (1) above can be changed. A defor- 
mation fault in the NixAl~_x martensite can be 
modeled as a change in the stacking rule so that, at a 
random place in the (5, 2) sequence, the plus (or 
minus) layer-layer shear becomes a minus (or plus). 
The accumulated interlayer shear g, for the first 15 
layers of a perfect (5, 2) sequence is displayed in Fig. 
2(a), while g, for a sequence with two deformation 
faults is shown in Fig. 2(b). 

Fig. 3(a) contains the calculated intensity profile 
I(l) along an h = 4, k = 0 line for an NixAl~-x crystal 
with randomly introduced (2% probability per layer) 
deformation faults. The perfect-crystal diffraction 
pattern is shown in Fig. 3(b). Both calculations are 
for an ensemble with T = 100 and Arc = 200, which 
has been empirically determined to be sufficient for 
the numerical averages to converge. The intensity is 
calculated along an hOl line because of the well 
known fact that stacking-fault disorder of the planes 
parallel to the a and b directions manifests itself in 
the diffraction profile parallel to the c* axis in 
reciprocal space. In Fig. 3(b), the diffraction peaks 
have been labeled with the standard monoclinic 
indices for comparison to the data of Fig. 4 of Noda 
et al. (1990). 

The diffraction pattern for defects of any complex- 
ity can be studied, limited only by the willingness of 
the investigator to specify (and code) the rule for 
their insertion into the perfect-crystal stacking 
sequence. For instance, the model can be further 
refined by allowing the deformation-fault occurrence 
probability to be different at each layer. Also, in 
principle, one could allow for differing shifts (say 
+ u~ for shifts in the plus direction and - u2 for those 
in the opposite direction). Fig. 2(c) shows g, for 15 
layers of the (5, 2) sequence where a fault occurs 
regularly at each seventh layer. This produces a new 
lattice with the (6, 1) stacking rule. In Figs. 3(c) to 
(g), the diffracted intensity is calculated along the 40l 
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line for this defect with occurrence probabilities of 
0.10, 0.25, 0.5, 0.75 and 1.0. In this fashion, the 
diffraction pattern for all intermediate states of order 
between a pure (5, 2) and a perfect (6, 1) can be 
obtained. In this sequence of calculations, the 
diffraction-peak positions systematically shift as the 
'average' stacking order and consequent monoclinic 
angle change. In addition, the diffraction peaks 
broaden as the stacking-fault probability approaches 
0.5 - this is where the disorder is greatest. 

It is also possible to select models that will change 
the 'average' number of layers in the unit cell. Such 
models create diffraction-peak position shifts as well 
as changes in the number of peaks observed. It is not 
unusual to find some diffraction peaks strongly 
broadened or shifted while others are hardly affected 
as the stacking-fault insertion probability is varied. 

The diffraction pattern appropriate to a polycrys- 
tal can be obtained from (7) by a two-step process. 
First, the intensity profile for crystallites with the 
reversed stacking order (twins) is given by / ( / twin)=  
I ( - l ) .  The diffraction pattern in terms of the scat- 
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Fig. 2. Accumulated layer-layer shear index, gn representing: (a) a 
perfect (5, 2) stacking; (b) a (5, ~) stacking with two deforma- 
tion faults, one at n = 4 and the other at n = 7. Note that, in this 
case, the effects of these two faults cancel for n > 8. (c) A 
deformation fault that occurs at the same place (site 7) in each 
set of seven layers creates a new crystal structure. In this case, a 
(6, T) stacking. 

tering angle 20 is then simply given by the intersec- 
tion of the sphere of reflection with the intensity 
profile I to ta l ( l )=l ( l )+I ( - l ) ,  which assumes an 
equal probability for the direct and twinned layer 
stackings in the polycrystalline sample. Note that, in 
the case of a polycrystal, the direct and twinned 
crystallites scatter incoherently. This is in contrast to 
the case of twin faults within a single crystal, dis- 
cussed above, where the computation must properly 
account for the interference terms. 

Calculation of the diffraction profile of the 
NixAl~_x martensite for a variety of layer defect 
types has not yet duplicated the pattern of intensities 
revealed by the neutron diffraction experiments of 
Noda et al. (1990). In particular, their observation 
that hOl diffraction peaks are shifted by differing 
amounts and directions, with respect to the perfect 
(5, 2) peak positions, has not been reproduced in 
these simulations and we conclude that the appro- 
priate defect has not yet been identified. One may 
view our modeling as a method of using stacking 
faults to change randomly the local monoclinic angle 
without the unsubstantiated assumption of the 
stability of the periodon distortion. Additional com- 
puter modeling as well as some experimental investi- 
gations are still in progress. 

4. S t a c k i n g  faul ts  in other crystal  s tructures  

The calculation of diffraction profiles for the 
NixAll _x martensite provides a good example of the 
methods that would be used for the analysis of 
stacking faults in other crystal structures. This sec- 
tion briefly addresses additional examples: the classic 
cases of stacking faults in trigonal polytypes and on 
the (211) planes of body-centered-cubic crystals. 
These examples have been extensively analyzed both 
experimentally and theoretically and excellent sum- 
maries of the effects of simple faults on the diffrac- 
tion profiles have been published (Welberry, 1985; 
Schwartz & Cohen, 1977; Barrett & Massalski, 
1980). The material here is included because this 
method of modeling the defective crystalline state 
permits the consideration of more complex defects. 

4.1. Trigonal structures 

Viewed along the cubic [111] direction, the atoms 
in a single layer of a face-centered-cubic (f.c.c.) crys- 
tal form a two-dimensional trigonal lattice. In the 
perfect crystal, the atoms in successive layers occupy 
the well known A, B, C (or A, C, B) positions in 
sequence. If the atom positions alternate between 
two of these choices, say A and B, a hexagonal-close- 
packed (h.c.p.) lattice will result. The h.c.p, and f.c.c. 
crystal structures are dicusssed in nearly every stand- 
ard work on condensed-matter physics and crystal- 
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lography. What is less widely appreciated is that 
there are many other crystal structures built from the 
same motif. The number of unique close-packed 
stackings (polytypes) of trigonal layers is further 
discussed by Berliner & Werner (1986). A com- 
prehensive treatment of the entire question of 
polytypes and their diffraction patterns is given by 
Verma & Krishna (1966). In addition to the variety 
of possible polytype crystal structures, polytypes 
support a rich array of topologically possible 
stacking faults. Some of the consequences of com- 
plex stacking faults in long-period rhombohedral 
polytypes were analyzed by Berliner et al. (1992). 

A method for calculating stacking-fault-altered 
polycrystalline diffraction profiles in trigonal 
polytypes was derived by Berliner & Werner (1986) 
and the extension to single-crystal specimens was 
stated without proof by Berliner et al. (1989). A 
derivation of that result is presented here. 

In the perfect f.c.c, crystal, atoms in successive 
layers occupy the A, B, C (or A, C, B) positions at 

RA = 0a + 0b 

RB = (2)a + (~)b (8) 

Rc = (~)a + (2)b. 

The position of the nth layer is then given by 

R. = [(~)a + (~)b)]g,, + nc, (9) 

where g , ,=0,  1, 2, 3, 4 . . . .  for the ABCAB. . .  
stacking that characterizes a f.c.c, crystal. Equation 
(4) can then be written as 

NaNb[Nc N c - I N " - - B  d~r /d /2= b 2 + Z 7. (exp {2"n'i[(2h/3) 
6=1 n = l  "1 

(k/3)]Ag~,.}exp(2~ri/8) + c.c.)J, (10) + 

where Ags..  = g8 +,, - g.  = {0, _+ 1, _+ 2,. . .}. For 
mod3 (Ags . . )=  0, layers n + 8 and n must be of the 
same type: A-A,  B - B  or C-C.  When mod3 (Ags,.) = 
1, the layers n + 8 and n are of the type A-B,  B - C  
and C-A,  while the case mod3 (Ags,.) = 2 arises from 
B-A,  A-C ,  C-B.  With Q in reciprocal-space coordi- 

Fig. 3. Calculated diffraction patterns for the NixAll _.~ martensite. 
All the profiles are calculated for an ensemble of 100 crystallites 
200 layers long. The layers are assumed to be arbitrarily large in 
the transverse directions. (a) The 401 diffraction profile for a 
0.02 deformation-fault  probability at each layer. (b) The perfect 
(5, 2) stacking profile. The posit ions o f  the peaks have been 
labeled with the standard monocl inic  indices. (c)--(f) Diffrac- 
tion profiles for deformation-fault  probabilities of 0.10, 0.25, 
0.50, 0.75 at site 7 (n = 6 in Fig. 2a). (g) The diffraction profile 
for a site-7 deformation-fault  probability of 1.0. This is a perfect 
crystal with (6, 1) stacking. 
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nates, the cross section, (10), becomes 

do-/dY2 = 2b~NaNb[ Nc 

N~-I 

+ Z [NAA(8) + Nss(8) + Ncc(8)] 
8=1 

x [exp (2~-i8l) + c.c.)] 

Nc-l 

+ ~'. [NAB(8) + Nsc(6) + NCA(8)] 
8=1 

x (exp{2rri[(2h/3) + (k/3)]} 

× exp (2rriSl) + c.c.) 

No-1 
+ ~ [NBA(6) + NCB(8) + NAC(6)] 

6=1 

x (exp 4~'i[(2h/3) + (k/3)] 

× exp (2,n-i8l) + c.c.)], (11) 

where NAA(8), NAs(8), ..., Ncc(8) are the numbers 
of pairs of layers of type AA, BB, ..., CC separated 
by a distance 8 layers. After some algebra, the 
expression 

I No-  1 
do/d~=b2N~Nb Nc+ Z (2N~(8)cos(2~l) 

8=1  

+ 2[(N¢ - 6 ) -  Ns(8)]cos(27rSl) 

x cos {27r[(h-k)/3]}- ND(8) sin (27r8l) 

X sin {27r[(h-k)/3]})] (12) 

is obtained with 

Ns(6) = NAA(8) + NsB(8) + Ucc(8) (13) 

and 

ND(8) = [NBA(8)-- NAB(8)] + [NAc(8) - NcA( 8)] 

+ [Ncs( 8) - Nsc( 8)], (14) 

which is just the expression presented by Berliner et 
al. (1989). In the case of diffraction from a 
polycrystalline specimen with stacking faults, (12) 
adopts a particularly simple form (Berliner et al., 
1989), described earlier by Wilson (1941). There are 
extensive examples of the use of (12) by Berliner et 
al. (1989, 1992) for the case of double twin faults in 
the long-period rhombohedral polytypes. 

materials. The analyses of Guentert & Warren (1958) 
and Hirsch & Otte (1957) were applied to the 
broadening of the diffraction peaks in a variety of 
b.c.c, metals. They were applied to a variety of metal 
systems to identify the fault system for b.c.c, metals 
(Rothman & Cohen, 1971). In this section, the 
methods of this paper are applied to the problem of 
calculating the diffraction profile of a b.c.c, crystal 
with stacking faults. 

The slip system in many b.c.c, crystal structures is 
along the (211) planes. Fig. 4 shows the atom posi- 
tions for two successive (211) planes that comprise a 
b.c.c, crystal. The orientation of the cubic [1]-0] and 
[111] are also shown. In order to analyze the effect of 
stacking faults in this system, it is convenient, once 
again, to adopt orthorhombic coordinates:* 

ao = (ac + be-  cc)/2 

bo = a t -be  (15) 

Co = (a,. + bc + 2c¢)/6, 

where the subscripts o and c identify the ortho- 
rhombic and cubic coordinates, respectively. Corre- 
spondence between the cubic, (HKL), and 
orthorhombic, (hkl), plane indices is obtained from 
(15) by replacing ao, bo, Co, by h, k, l and a~, b~, c~ by 
H, K, L, respectively. 

In these orthorhombic coordinates, as the crystal 
is assembled by stacking the cubic (211)-plane layers, 
each of the layers is displaced in the transverse 
direction by the vector 

R .  = -(aog,)/3 + (bo/4)[(- 1)"- 1] + nCo, (16) 

where gn is the accumulated shear of the nth layer. 
There are six separate orientations of the b.c.c. (211) 
layers before the pattern repeats. As with the f.c.c. 
crystal case, g,, = 0, 1, 2, 3, ... for successive layers. 

Equation (4) for the b.c.c, crystal can then be 
written as 

do-/dg2 = b2NaNb{Nc+ (l/T) 

N~-I No-8 
x Z Z [exp (27ri{-(h/3)Ags.,, 

6= 1 n=  1 
~t 

+ (k/4)[(- 1)"+8-( - 1)"]+ 31}) + c.c.]}, 

(17) 

with the standard expansion of Q. Expanding (17) 
and explicitly introducing the average over the 

4.2. Faults in the (211)planes 

Through the 1950s and 1960s, various workers 
considered the problem of stacking faults in b.c.c. 

* This is the same as the orthorhombic coordinate system used 
by Hirsch & Otte (1957), except that the layer-layer separation 
along the c axis is used for the third coordinate instead of the 
lattice parameter. 
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ensemble, one obtains: 
r 

I(Q) = b2UaU~[Uc + ( l /T) 
Im  

x Z Z 2 {cos[2"a'(h/3)Ags,,,] 
6 = 2 t r i a l s  n = l  
e v e n  

+ cos (2 ~r 8l) sin [ 2"rr(h/3 )Ags, n] sin (2 ~r 8l)} 
No-1 r No-8 

+ ~" ~" ~" 2(-1)h[cos[2w.(h/3)Ags,,,] 
8 = 1 t r i a l s  n = 1 
o d d  

x cos (2~8l)  + sin [2~'(h/3)Ags,,,] 

×s in  (2~r8/)})], (18) 

which is quite similar to the expression obtained for 
NixAll_x, (7), and can be evaluated using an 
analogous prescription. Equation (18) illustrates that 

Layer 1 

only diffraction peaks with h = 3p_+ 1, p = 0, 1, 2, . . . ,  
are affected by layer defects. 

Deformation faults of  the b.c.c. (211) layer 
stacking can be modeled by jogs of g,, as is the case 
in NixAll-x  or the trigonal polytypes. Figs. 5(a) and 
(b) show the calculated 10l diffraction profiles for 
b.c.c, crystals with 0.06 and 0.12 per layer 
deformation-fault  probabilities. Note that the dif- 
fraction peaks have been slightly, displaced from their 
Bragg's law positions of l - - 3, ~. The displacement 
obtained is in agreement with the analytical calcula- 
tions of  Hirsch & Otte (1957). Fig. 5(c) contains the 
calculated diffraction profile for a more complicated 
layer defect, a two-layer twin fault. The jogs of g,, in 
this case are equivalent to those shown in Fig. 2(a) 
occurring at random, rather than regular, positions. 
This model exhibits strong asymmetric streaking as 
well as a significant diffraction-peak-position shift in 
the direction opposite to that produced by simple 
deformation faults. 

5. Summary 

This contribution illustrates a particularly facile 
method for calculating the diffraction profiles for 

bo 

Layer 2 

.-ao-~ 

[II0] c 

• • • 

~- [ l l i lc  

Fig. 4. The positions for atoms on two successive (211) layer 
planes, denoted layer 1 and layer 2, that form a b.c.c, crystal. 
Six layers comprise the complete unit cell. The orientation of 
the cubic [IT0] and [Ill] directions is shown, as is the vector 
representing the displacement between successive layers in the 
perfect crystal stacking. 

6x lO  3 

0 

4x lO  3 

0 
3.2x103 

Deformation F a u l t s  
0 .06 P r o b a b i l i t y / L a y e r  0 .3444  
200 L a y e r s  200  T r i a l s  [ 

b)  D e f o r m a t i o n  F a u l t s  
0 .12 Probability/Layer 
200  L a y e r s  400  T r i a l s  0 .3555  

I 

c) T w o  Layer Twin F a u l t s  
0 .12 Probability/Layer 
200  L a y e r s  400  Tr i a l s  
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Fig. 5. Calculated b.c.c, diffraction profiles. In each case, the 
intensity has been calculated along the orthorhombic 10l line for 
ensembles of either 200 or 400 crystallites. (a) Deformation 
faults, 0.02 probability per layer. (b) Deformation faults, 0.12 
probability per layer. (c) Two-layer twin faults, 0.12 probability 
per layer. The position of the peak of the intensity distribution 
is indicated for each distribution. 
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crystals with layer defects. Its primary utility is that 
complex defect models can be easily analyzed in 
comparison with experimental results. Three cases 
have been presented as examples: stacking faults in 
the NixAll_~ (5, 2) monoclinic martensite, layer 
defects in trigonal polytypes and faults in the (21 l) 
planes of a b.c.c, crystal. In each case, the position of 
the nth layer is expressed in terms of a phase index, 
gn, which is then tabulated for an ensemble of crys- 
tallites. The averages that prescribe the diffracted 
intensity profile are then evaluated by direct compu- 
tation. The parameters of the calculation, the size of 
the crystallite Arc and the number of crystallites in the 
ensemble T can be empirically determined. In some 
cases, Arc or T may be specified by the nature of the 
problem: for instance, a small value of N~ might be 
used to analyze the diffraction patterns obtained 
from thin adsorbed gas layers on surfaces. An appro- 
priate value for T can usually be obtained by numeri- 
cal experimentation. 

Implementation of diffraction-profile calculations 
such as these requires rather simple computer pro- 
grams. The b.c.c. (211)-plane example is less than 100 
lines of Fortran code exclusive of comments and 
calculates 2000 values of I(l) for an ensemble of 200 
crystallites 100 layers long in less than 2 min on a 
DEC MicroVAXIII +.  Copies of the computer pro- 
grams appropriate to the 7M, b.c.c, and trigonal 
cases discussed in this paper are available from one 
of the authors.* Extension of these ideas to layer 
defects in crystals with variable layer spacing or to 
crystals composed of different kinds of layers 
appears to be straightforward. 

The authors gratefully acknowledge the assistance 
of Y. Noda, who provided a copy of the raw data 
from his neutron diffraction experiments on 
NixAll_x. The authors also acknowledge the helpful 
comments of M. Popovici, who read a draft of the 
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* R. Berliner, Research Reactor Center, University of Missouri, 
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